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ABSTRACT 1 
  2 

The objective of this research was to develop total crash and fatal/injury crash prediction models 3 

for rural horizontal curves on undivided roads, with focus on three distinct aspects.  The first was 4 

an emphasis on assembling a high quality large dataset.  Crash prediction models were 5 

developed using a dataset of 11,427 rural horizontal curves on Wisconsin State Trunk Network 6 

roads with over 13 different parameters and four distinct types of crash dataset.   7 

 The second focus area was to use regression tree analysis in creating a simple model of 8 

horizontal curve safety aimed at practitioners of systemic road safety management and creating 9 

subsets of data which warranted further analysis.  Regression tree results identified curve radius 10 

of approximately 2,500 feet as a significant point below which there is a marked increase in 11 

crashes on horizontal curves. 12 

The third focus area of this research was to compare horizontal curve crash prediction 13 

models using different crash datasets.  Models based on crash dataset with and without crashes in 14 

the proximity of intersections were compared.  The results show that when crashes on horizontal 15 

curves are selected where crash report forms indicate the presence of a horizontal curve, crashes 16 

in proximity of intersections do not impact model results significantly; therefore, the inclusion of 17 

such crashes would increase the size of dataset benefiting model development.   18 

 19 

  20 
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INTRODUCTION 1 
In the United States, approximately one-quarter of highway fatalities occur on horizontal 2 

curves (1).  The average crash rate for horizontal curves is about three times the average crash 3 

rate for highway tangents (2).  Research indicates that there is greater propensity for severe 4 

crashes at horizontal curves as stated in the Texas Transportation Institute’s horizontal curve 5 

signing handbook (3).  Persaud et al. stated that motor vehicle crashes happen more frequently 6 

and are more severe on horizontal curves (4).  Horizontal curves are necessary element of 7 

highways however, they are also likely to cause safety hazards to road users because of the 8 

changes in driver expectancy and vehicle handling maneuvers.  Schneider et al. provided two 9 

explanations from driver awareness perspective; that the driver may be unaware of the 10 

approaching horizontal curve, or the driver underestimates the radius or sharpness of the curve 11 

(5).  In another study, Schneider et al. states that horizontal curves may reduce the driver’s 12 

available sight distance and reduce vehicle-handling capabilities (6).  Therefore, improving 13 

safety at horizontal curves is an essential part of an overall safety management plan, which 14 

presents the need for developing crash prediction models especially with respect to horizontal 15 

curves.  The objectives of this research were to develop crash prediction models for different 16 

conditions and crash data in order to understand the impacts of various geometric features on 17 

horizontal curve safety and gain more insight into this critical safety problem. 18 

 19 

LITERATURE REVIEW 20 
The Federal Highway Administration (FHWA) published a document on providing low-cost 21 

safety treatment for horizontal curves signifying the importance of safety at horizontal curves 22 

(7).  Although there has been some research in the past on safety at horizontal curves, the 23 

availability of high quality and large dataset has been the Achilles’ heel in past research studies.  24 

Literature shows that safety at horizontal curves has been studied from a number of difference 25 

perspectives.  Different crash types have been used in developing crash prediction models and 26 

modification factors e.g. truck-related, motorcycle, run-off-the-road, non-intersection related 27 

crashes etc.  (5, 6, 8, 9, 10, 11).  However, what is not clear is the difference in horizontal curve 28 

safety with respect to different types of crash dataset at the same location.  29 

A review of literature shows that run-off-the-road and head-on crashes accounted for 87 30 

percent of all fatal crashes at horizontal curves (2).  Another report states that 76 percent of the 31 

curve-related fatal crashes involve single vehicles leaving the roadway and striking roadside 32 

objects such as trees, utility poles, or rocks (7).  The effect of geometric features such as shoulder 33 

width may contribute significantly to safety at horizontal curves; an area which has not seen 34 

much research in the literature (12).  Furthermore, the primary focus of horizontal curve-related 35 

safety research has been on two-lane rural roads given that about 75 percent of all curve-related 36 

fatal crashes occur in rural areas, and more than 70 percent are on two-lane secondary highways 37 

which are mostly local roads (7, 13).  Therefore, the focus of this research was also on rural 38 

roads; however, all rural roads were considered as part of the dataset rather than just two-lane 39 

roads.   40 

 41 

Horizontal Curve Safety Influencing Factors 42 
Many research studies have been conducted to investigate the relationship between crash 43 

frequency, severity, and geometric attributes of horizontal curves.  Some key factors and 44 

research findings are summarized in Table 1. 45 
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TABLE 1 Literature Review Summary of Horizontal Curve Safety Influencing Factors 1 

Horizontal Curve Safety Influencing Factors 

Author Factor  Summary 

Zegeer et. al. (14)  

 

 

Curve Radius and 

Degree of Curvature 

A 500-ft radius curve is 200% more likely to produce a crash than an 

equivalent tangent section, and a 1,000-ft radius curve is 50% more likely 

to produce a crash than an equivalent tangent section. 

Schneider et al. (5, 6) When curves become sharper the model predicts an increase in truck 

crashes on horizontal curves. The radius and degree of curvature 

significantly influence motorcycle crashes on horizontal curves 

Voigt and Krammes (15), 

Council (16) 

The degree of curvature and radius are significant variables influencing 

crash rate on horizontal curves. 

Khan et al. (12) Crash rates decreases as radius increases. 

 

Miaou and Lum (17) Truck crash involvement increases as horizontal curvature (Degree of 

Curvature) increases. 
 

Schneider et al.(6), Zegeer et al. 

(9) 

 

 

Curve Length 

Curve length as a significant factor for Truck crash involvement. A 

horizontal curve with a length of 31 m (100 ft.) and a radius of 31 m (100 

ft.) on a roadway segment would be expected to have an accident rate over 

28 times as high as a tangent section on the same roadway 

 

Schneider et al. (5, 6), Khan et 

al. (12) 

 

Traffic Volume 

The increase in passenger vehicle Average Daily Traffic (ADT) is 

associated with an increase in truck and overall crashes on curves. Also the 

total ADT also affects motorcycle crashes on curve. 

Schneider et al.(6), Zegeer et al. 

(9), Khan et al. (12) 

Shoulder Width Shoulder width is a significant variable that affects crashes on curve. 

 

Hallmark (18) 

Tangent length 

before curve 

Crash rates on curves with long preceding tangent lengths will be more 

dangerous when the curve is located on a downgrade of 5% or more, and 

tangent lengths more than 200 meters. 

 

Fitzpatrick et al. (19) 

Driveway Density 

(Curves and 

Tangent) 

There is no significant difference in crash rates on horizontal curves and 

tangents with same driveway density. 
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Horizontal Curve Crash Prediction Models 1 
Research studies in the past have focussed on developing crash prediction models for horizontal 2 

curves predominently using generalized linear models.  Caliendo developed a crash prediction 3 

model based on a four lane, median divided roads in Italy using ADT, curve length, intersection 4 

presence, and radius as factors (20).  Schneider et al. developed a model for truck crashes on 5 

horizontal curves using length, truck ADT, passenger vehicle ADT, and degree of curvature (5).  6 

Persaud et al. developed a model including AADT, length of curve, and curve radius as 7 

parameters (6).  Other studies have developed crash prediction models for horizontal curves 8 

using limited variables.  Bonneson et al. developed horizontal curve crash prediction models for 9 

multilane highways using radius and speed limit data (21, 22).  Fizpatrick developed a crash 10 

prediction model for freeways using only the degree of curvature as an independent variable and 11 

assuming zero degree as the base condition (23).  The Highway Safety Manual (HSM) also 12 

provides several Crash Modification Factors (CMFs) for horizontal curves however the standard 13 

error values are unknown making the results unreliable (24).   14 

 15 

RESEARCH OBJECTIVE 16 
In light of the literature review, the main objective of this research was to develop crash 17 

prediction models to evaluate the effects of various geometric features on safety at horizontal 18 

curves.  There were three main focus areas in this research aimed at adding to the current 19 

knowledge and building upon past research.  The first was an emphasis on assembling a high 20 

quality large dataset with various roadway and geometric variables (posted speed, advisory 21 

speed, pavement type, etc.) to gain further understanding and insight into safety issues at 22 

horizontal curves.  The use of a high quality comprehensive dataset would provide a better 23 

chance to develop accurate models.  The second focus area pertained to the use of regression tree 24 

analysis to improve the development of crash prediction models and explore applications in 25 

systemic safety management.  The third focus area was to research the differences in safety on 26 

horizontal curves with respect to different types of crash dataset.   27 

 28 

DATA COLLECTION AND PROCESSING 29 
One of the main features of this research was an emphasis on assembling a comprehensive, high-30 

quality, and large dataset.  Horizontal curve, crash, and various roadway data elements from the 31 

Wisconsin Department of Transportation (WisDOT) roadway safety management database 32 

consisting of roadway, mobility, pavement data, were assembled details of which are described 33 

in the next sections.  34 

 35 

Horizontal Curve Data 36 
WisDOT maintains horizontal curve information including attributes such as radius, degree of 37 

curvature, length, route, county, and mile markers for the start and end points of each curve.  The 38 

data were collected on Wisconsin State Trunk Network (STN) roads from WisDOT Photolog 39 

dataset which has a scale of 0.01 miles (52.8 ft.) using an automated algorithm in a Geographic 40 

Information System (GIS) environment.  The automated algorithm analyzed the angle between 41 

subsequent Photolog points (every 0.01 miles) to calculate curve attributes (25).  The data were 42 

mapped using the Photolog Lane Mile (PLM) routes which were created to enable the integration 43 

of Photolog-based data with other WisDOT GIS database (26). 44 
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One of the drawbacks of using an automated algorithm to detect horizontal curves was 1 

the inclusion of potential tangent sections with very large radii in the dataset.  Therefore, as a 2 

starting point, the dataset was trimmed by selecting curves with radius less than 10,000 ft. and 3 

greater than 200 ft.  The lower end choice was based on manual review of locations almost all of 4 

which were intersections turns.  The resulting dataset included 30,185 potential horizontal curve 5 

locations on the STN roads in Wisconsin.  The dataset included separate records for curves in 6 

each direction of a highway on both divided and undivided roadways which was a significant 7 

departure from general practice in the past because it provided the opportunity to analyze 8 

detailed differences in horizontal curves safety.  9 

Figure 1 shows the breakdown of the curve dataset in terms of location, type of highway, 10 

and the presence of sign data.  The sample size of curve datasets as shown in Figure 1 signifies 11 

the strength of this research in assembling a large dataset.  The focus of this research was on 12 

rural curves on undivided roads in view of the literature and objectives defined which totaled 13 

20,842 curve locations.  This included 27 curves on rural multilane roads which were included in 14 

the analysis with the belief that the use of travel-way width variable would account for the 15 

difference between curves on multilane and two-lane roads in rural areas.  A total of 99 16 

horizontal curves had one or more data elements missing therefore the final sample size was 17 

20,743.  The analysis of other curve types would be conducted later as part of a larger curve 18 

safety evaluation project.   19 

 20 
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 1 
Figure 1 Details of Horizontal Curve Dataset on Wisconsin STN Roads 2 

 3 

Crash Data 4 
Crashes on horizontal curves in Wisconsin for the five year period between 2006 and 2010 were 5 

obtained.  A 200 foot buffer downstream of the horizontal curves was specified to capture 6 

crashes that may have ended outside the proximity of the curves.  Deer and other animal-related 7 

crashes were removed from the analysis because it is difficult to identify an engineering 8 

countermeasure to deal with such crashes.  Wisconsin experiences a large number of deer-related 9 

crashes each year and it is a common practice to remove these crashes from analysis.  One 10 

question facing the authors was how to identify crashes most relevant to horizontal curve safety; 11 

the answer to which was not clear from the literature.  Therefore, a decision was made to 12 

assemble several different crash dataset to compare the results as indicated in the objectives.  The 13 

differences in the dataset were based upon two fields in the Wisconsin crash report forms 14 

(MV4000).  The first field identified crashes within 150 ft. of an intersection or driveway; and 15 
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the second field noted the presence of a horizontal curve at the point of impact of a crash as 1 

identified by the reporting officer.  Furthermore, separate dataset were created for total and 2 

fatal/injury crashes (injury crashes included incapacitating and non-incapacitating injuries).   3 

 4 

Roadway Data 5 
Horizontal curve geometric attributes were available as part of the dataset maintained by 6 

WisDOT.  Horizontal curve roadway data e.g. traffic and truck volumes, shoulder and travel-way 7 

widths, posted speeds, pavement information, were obtained from the WisDOT road safety 8 

management database.  Furthermore, advisory speed data were obtained from sign database 9 

maintained by WisDOT which contains GIS points for each sign location on Wisconsin STN 10 

roads.   11 

   The individual datasets, namely horizontal curve geometric attributes, crash, roadway 12 

data elements, and signs are maintained at WisDOT using linear referencing system with an 13 

intended accuracy of 0.01 miles (52.8 ft.).  The datasets were overlaid and merged together in a 14 

GIS environment using data integration techniques developed by Khan et al. (26).  Crash and 15 

roadway data elements were aggregated for each individual horizontal curve location.  The most 16 

relevant variables were selected for analyzing horizontal curve safety and data were checked for 17 

errors and missing elements.  Table 2 shows the descriptive statistics of different variables and 18 

crash dataset on undivided rural curves in Wisconsin.  Additionally, a number of categorical 19 

variables were created using existing data which are described below: 20 

 21 

RSTBase = right shoulder type paved (base condition),  22 

RSTR = right shoulder type rumble,  23 

RSTU = right shoulder type unpaved,  24 

DiffPSAS = Difference between posted and advisory speeds,  25 

PVTBase = asphalt pavement (base condition),  26 

PVTC = concrete pavement,  27 

PVTRM = road-mix pavement,  28 

UTBase = upstream tangent > 2600 feet (base condition),  29 

UT1 = upstream tangent 0 – 600 feet,  30 

UT2 = upstream tangent 601 – 1200 feet, and 31 

UT3 = upstream tangent 1201 – 2600 feet.   32 

  33 
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TABLE 2 Descriptive Statistics of Continuous Variables 1 

Variable Name Mean Median 

Std. 

Dev. 

Curve Radius (ft.) (R) 2920.4 2280.0 2012.6 

Curve Length (ft.) (L) 914.8 739.0 619.2 

Historical AADT (AADT) 1337.8 1000.0 1121.9 

Truck Percentage (%) (TRK)  10.9 11.0 4.1 

Travel Way Width (ft.) (TWD) 11.7 12.0 0.9 

Left Shoulder Width (ft.) (LSW) 6.1 6.0 2.8 

Right Shoulder Width (ft.) (RSW) 6.1 6.0 2.8 

Average IRI (mm/meter) (IRI)
a 1.8 1.6 0.8 

Pavement Surface Age (Yrs.) (PSage) 13.1 12.0 8.8 

Upstream Tangent Length (ft.)  2854.9 1000.0 6545.5 

Posted Speed (mph) (PS) 31.7 25.0 10.1 

Difference between Posted and Advisory Speeds (mph) 

(DiffPSAS) 0.5 0.0 3.1 

HORC
b 0.3 0.0 0.9 

KABHORC
c 0.1 0.0 0.4 

HORC_N
d 0.3 0.0 0.7 

KABHORC_N
e 0.1 0.0 0.3 

ALL
f 0.7 0.0 3.3 

KABALL
g 0.2 0.0 0.7 

ALL_N
h 0.5 0.0 1.3 

KABALL_N
i 0.1 0.0 0.4 

a
International Roughness Index (27) 2 

b
Sum of crashes where horizontal road terrain at point of impact was a curve as identified by 3 

crash report form (HORC dataset = 7,024 crashes). 4 
c
Sum of fatal and injury (K, A, and B) crashes where horizontal road terrain at point of impact 5 

was a curve as identified by crash report form (KABHORC dataset = 1,973 crashes). 6 
d
Sum of crashes where horizontal road terrain at point of impact was a curve as identified by 7 

crash report form and distance from closest intersection or driveway was greater than 150 ft. 8 
(HORC_N dataset = 5,631 crashes). 9 
e
Sum of fatal and injury (K, A, and B) crashes where horizontal road terrain at point of impact 10 

was a curve as identified by crash report form and distance from closest intersection or driveway 11 
was greater than 150 ft. (KABHORC_N dataset = 1,628 crashes). 12 
f
Sum of all crashes located on horizontal curves using mile marker information regardless of 13 
crash report form information (ALL dataset = 15,097). 14 
g
Sum of all fatal and injury (K, A, and B) crashes located on horizontal curves using mile marker 15 

information regardless of crash report form information (KABALL dataset = 3,592). 16 
h
Sum of all crashes located on horizontal curves using mile marker information regardless of 17 

crash report form information and where distance from closest intersection or driveway was 18 
greater than 150 ft. (ALL_N dataset = 10,072). 19 
i
Sum of all fatal and injury (K, A, and B) crashes located on horizontal curves using mile marker 20 
information regardless of crash report form information and where distance from closest 21 
intersection or driveway was greater than 150 ft. (KABALL_N dataset = 2,545) 22 

 23 
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STATISTICAL METHODOLOGY 1 
Poisson regression has been traditionally used in crash data modeling but the constraint on 2 

equality of mean and variance has driven researchers to consider the Negative Binomial (NB) 3 

regression methodology.  One way of dealing with the traditional Poisson model restrictions is to 4 

use the same estimating functions for the mean, but to base inference on the more robust Quasi-5 

Poisson regression. 6 

 7 

Quasi-Poisson Model 8 
Quasi-Poisson uses the mean regression function and the variance function from the Poisson 9 

Generalized Linear Model (GLM) but leaves the dispersion parameter unrestricted.  Thus, the 10 

dispersion parameter is not assumed to be fixed at 1 but is estimated from the data which leads to 11 

the same coefficient estimates as the standard Poisson model but inference is adjusted for over-12 

dispersion.  Consequently, Quasi-Poisson does not correspond to models with fully specified 13 

likelihoods and its Akaike Information Criterion (AIC) does not have traditional meaning. 14 

 15 

Negative Binomial Model 16 
Another way to model over-dispersed count data is to assume NB distribution for which there 17 

can be a gamma mixture of Poisson distributions.  One parameterization of its probability density 18 

function is: 19 

 20 

f ( y ;μ ,θ)=
Γ ( y+ θ)

Γ (θ) y!
.

μ yθθ

(μ+ θ)
y+ θ         (1) 21 

 22 

with mean μ  and shape parameter θ ; Γ ()  is the gamma function.  It has variance23 

V (μ)= μ+
μ2

θ .  When θ  goes to infinity, Negative Binomial approaches a Poisson distribution. 24 

 25 

Akaike Information Criterion  26 
The AIC is a measure of the relative goodness of fit of a statistical model which loosely 27 

describes the tradeoff between the accuracy and complexity of the model.  In the general case, 28 

the AIC is 29 

 30 

AIC = 2k – 2 ln (L)         (2) 31 

where 32 

k = the number of parameters in the statistical model, and  33 

L is the maximized value of the likelihood function for the estimated model. 34 

 35 

Variance Inflation Factor 36 
Variance Inflation Factor (VIF) quantifies the severity of multicollinearity in regression analysis 37 

by calculating a factor by which variance in regression coefficient is inflated due to 38 

multicollinearity (28).  Generally, a VIF value of greater than four requires further review of the 39 

coefficients and a value greater than 10 is considered as an indication of serious multicollinearity 40 

(28).    41 
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Regression Tree using GUIDE 1 
Regression trees are machine-learning methods for constructing prediction models through 2 

recursive partitioning of data which can be graphically represented as a decision tree.  3 

Regression trees are specific to continuous or ordered discrete dependent variables as compared 4 

to classification trees which are designed for finite number of unordered values.  There are 5 

several algorithms in literature which implement regression tree with different strengths and 6 

weaknesses (29).  The regression tree algorithm used in this research was GUIDE (Generalized, 7 

Unbiased, Interaction Detection and Estimation).  GUIDE offers advantages in terms of unbiased 8 

splits (removing bias in splits due to large differences in sample sizes) and options of fitting 9 

complex node models, as compared to other regression tree algorithms e.g. Classification and 10 

Regression Tree (CART) (29, 30).   11 

 12 

MODEL DEVELOPMENT, RESULTS, AND DISCUSSIONS 13 

 14 

Regression Tree Model 15 
There were two main reasons to conduct regression tree analysis.  The first reason was to provide 16 

a simple model and basic understanding of horizontal curve safety for use in systemic road safety 17 

management process.  The second reason was to help trim the horizontal curve dataset to remove 18 

possible tangent sections with very high radius identified by automated algorithms.  The aim was 19 

to identify a cut-off radius value to determine a more realistic subset of horizontal curves which 20 

would warrant more attention with respect to horizontal curve safety.  In this respect, Figures 21 

2(a) and 2(b) show the results of GUIDE piecewise constant regression tree models for rural 22 

horizontal curves on undivided roads in Wisconsin using HORC and HORC_N crash dataset.   23 

At each intermediate node, an observation (individual horizontal curve record) goes to 24 

the left branch only if the condition is satisfied.  The values in italics at each terminal node show 25 

the mean number of crashes for the five year period from 2006 to 2010 for the set of horizontal 26 

curves at that node.  The results show that for HORC and HORC_N dataset, the mean number of 27 

crashes reduce significantly for horizontal curves with radius greater than 2499 foot and 2515 28 

foot, respectively.  Therefore, greater emphasis should be put on curves with radius less than 29 

2,500 foot.  The radius of 2,500 foot can also be used as a cut-off value to identify the most 30 

critical horizontal curves to develop crash prediction models.  Additionally, for radii less than 31 

approximately 2500 feet, traffic volume becomes an additional significant factor in identifying 32 

curves which experience more crashes. 33 

 The results in Figure 2(a) and 2(b) are fairly consistent between the two crash dataset and 34 

illustrate a simple model which is easy to interpret and provides vital clues regarding safety on 35 

horizontal curves in terms of radius and traffic volumes.  Furthermore, such results can be 36 

readily used in initial steps of systemic road safety management procedures by practitioners.   37 

 38 
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 1 

 2 

 3 

Negative Binomial Crash Prediction Models 4 
For more detailed evaluation of rural undivided horizontal curves, both Quasi-Poisson and NB 5 

models were fitted using R GLM framework (31).  A correlation matrix was developed to 6 

identify and remove correlated variables.  The process of model development started with the 7 

specification of a base model and the final crash prediction models were generated based on the 8 

results of stepwise regression using AIC as the model selection criteria.  The final Poisson model 9 

was refitted with Quasi-Poisson method to get the adjusted standard errors and significance 10 

levels.  The Quasi-Poisson and NB models were compared with each other using ten-fold cross 11 

validation.  Based on the cross validation score and ease of interpretation, the NB models were 12 

selected as the best models to be used in the final results.  Finally, VIF test was performed for 13 

each model to check for multicollinearity in regression coefficients.    14 

The complete rural undivided horizontal curve dataset contained 20,743 curves out of 15 

which 14,348 curves had radius greater than 1,660 feet (Curve Class A, degree of curvature 0.0 - 16 

3.45) and 6,395 had radius less than 1,660 feet (Curve Class B-F, degree of curvature > 3.45) 17 

(12).  Crash prediction models were compared for curves belonging to Curve Class A and Curve 18 

Class B-F curves.  The results showed that models for Curve Class A were inconsistent with 19 

normal expectations, e.g., curve radius coefficient was positive, etc.  The comparisons confirmed 20 

that as radius increased beyond a reasonable limit, the results could not be trusted as curves with 21 

large radii probably tend to behave as tangent sections.  Therefore, a decision was made to select 22 

a cut-off distance for radius based on the results of GUIDE regression tree models.  Horizontal 23 

curves with radius less than or equal to 2,500 feet were selected for developing NB crash 24 

prediction models (11,427 curves). 25 

The results of crash prediction models using different crash dataset are presented in the 26 

next section using variables defined in data collection and processing section and Table 2.  Right 27 

and left shoulder widths; right and left shoulder types were correlated variables; therefore, one 28 

was removed from the analysis depending upon statistical significance. 29 

 30 

 31 

Figure 2 GUIDE regression tree models for (a) HORC crash dataset (b) HORC_N crash 

dataset 
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Horizontal Curve Crash Prediction Models using HORC and KABHORC Crash Data 1 

 2 

The NB crash prediction models for total and fatal/injury crashes on horizontal curves using 3 

HORC and KABHORC crash dataset are presented in equation 3 and equation 4, respectively and 4 

Table 3.  The results show curve radius, curve length, and natural log of AADT as highly 5 

significant variables (p<0.0001) with coefficients signs and magnitude in line with findings in 6 

literature.  Left shoulder width is significant for HORC dataset and shows reduction in crashes as 7 

width increases; but is not significant for the severity model (KABHORC dataset).  For right 8 

shoulder type, unpaved shoulder shows increase in crashes whereas rumble strips show decrease 9 

in crashes as compared to base condition of paved shoulder; however the results for rumble strips 10 

are not significant at p = 0.05.   11 

The coefficient for average IRI shows that as the value decreases (pavement smoothness 12 

increases), there is an increase in crashes on horizontal curves.  A possible explanation could be 13 

reduction in pavement friction as pavement becomes too smooth leading to increase in crashes.  14 

The DiffPSAS variable shows that as the difference between posted and advisory speed limit on 15 

the curve increases, more crashes are expected.  This is a very important result because the 16 

difference determines the type of sign to be placed at a curve, hence an important finding of this 17 

research.  The tangent length upstream of a curve was used as a categorical variable where the 18 

base condition was a tangent length greater than 2,600 feet (approx. 0.5 miles).  The results show 19 

that compared with base conditions, less crashes are expected as tangent length decreases which 20 

points to possible driver expectancy issues as they approach the first horizontal curve after a long 21 

tangent section. 22 

 23 

  24 
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Table 3 Crash Prediction Models for Horizontal Curves on Rural Undivided Roads – Using 1 

HORC and KABHORC Crash Dataset 2 

HORC Crash Dataset (Total crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -4.6703 0.2007 -23.270 0.000 

Curve Radius (ft.) (R) -0.0008 0.0000 -21.550 0.000 

Curve Length (ft.) (L) 0.0007 0.0000 20.680 0.000 

Log of Historical AADT (AADT) 0.7072 0.0280 25.260 0.000 

Left Shoulder Width (ft.) (LSW) -0.0237 0.0093 -2.550 0.011 

Right Shoulder Type – Rumble (RSTR) -0.3529 1.1189 -0.320 0.752 

Right Shoulder Type – Unpaved (RSTU) 0.1621 0.0538 3.010 0.003 

Average IRI (IRI) -0.0821 0.0240 -3.410 0.001 

Difference between Posted and Advisory Speed (mph) (DiffPSAS) 0.0119 0.0045 2.640 0.008 

Upstream Tangent (0-600 ft.) (UT1) -0.4121 0.0459 -8.970 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.3449 0.0556 -6.200 0.000 

Upstream Tangent (1201-2600 ft.) (UT3) -0.1536 0.0521 -2.950 0.003 

AIC = 19458         

KABHORC Crash Dataset (Fatal/Injury Crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.2170 0.3212 -16.240 0.000 

Curve Radius (ft.) (R) -0.0007 0.0001 -11.630 0.000 

Curve Length (ft.) (L) 0.0006 0.0000 12.280 0.000 

Log of Historical AADT (AADT) 0.5875 0.0410 14.330 0.000 

Right Shoulder Type - Rumble (RSTR) -15.5216 2199.6843 -0.010 0.994 

Right Shoulder Type - Unpaved (RSTU) 0.2386 0.0826 2.890 0.004 

Average IRI (IRI) -0.1149 0.0392 -2.930 0.003 

Difference between Posted and Advisory Speed (mph) (DiffPSAS) 0.0148 0.0070 2.130 0.033 

Upstream Tangent (0-600 ft.) (UT1) -0.5601 0.0730 -7.670 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.4282 0.0882 -4.850 0.000 

Upstream Tangent (1201-2600 ft.) (UT3) -0.2056 0.0804 -2.560 0.011 

AIC: 8896         

 3 

                                       (    )                 4 

                                                               5 

                             (3) 6 

   7 

                                       (    )                  8 

                                                                   (4) 9 

 10 

 11 

 12 

 13 
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Horizontal Curve Crash Prediction Models using HORC_N and KABHORC_N Crash Data 1 

 2 

The results of the NB crash prediction models for total and fatal/injury crashes on horizontal 3 

curves using HORC_N and KABHORC_N crash dataset are presented in equation 5, equation 6, 4 

respectively, and Table 5.  The difference between these models and the models in Table 3 5 

(equation 3 and equation 4) is the exclusion of crashes occurring within 150 feet of an 6 

intersection or driveway.   7 

 The model in Table 4 for HORC_N crash dataset is similar to the model in Table 3 for 8 

HORC crash dataset in terms of variables with slight differences in the magnitude of coefficients.  9 

The model in Table 4 for KABHORC_N crash dataset compared with model in Table 3 for 10 

KABHORC crash dataset shows that the DiffPSAS variable is replaced by left shoulder width and 11 

the UT3 variable is insignificant.  Overall, the comparisons are interesting because they show that 12 

when the crash report form indicates the presence of a horizontal curve at the point of impact, the 13 

inclusion of crashes in proximity of intersections is justified to increase the size of dataset.  14 

Therefore, the models in Table 3 (equation 3 and equation 4) are recommended for use. 15 

  16 
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Table 4 Crash Prediction Models for Horizontal Curves on Rural Undivided Roads – Using 1 

HORC_N and KABHORC_N Crash Dataset 2 

HORC_N Crash Dataset (Total crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -4.7147 0.2120 -22.240 0.000 

Curve Radius (ft.) (R) -0.0006 0.0000 -16.760 0.000 

Curve Length (ft.) (L) 0.0007 0.0000 19.510 0.000 

Log of Historical AADT (AADT) 0.6461 0.0295 21.920 0.000 

Left Shoulder Width (ft.) (LSW) -0.0308 0.0099 -3.120 0.002 

Right Shoulder Type - Rumble (RSTR) -0.3017 1.1198 -0.270 0.788 

Right Shoulder Type - Unpaved (RSTU) 0.1508 0.0568 2.660 0.008 

Average IRI (IRI) -0.0688 0.0254 -2.710 0.007 

Difference between Posted and Advisory Speed (mph) (DiffPSAS) 0.0140 0.0047 2.940 0.003 

Upstream Tangent (0-600 ft.) (UT1) -0.2510 0.0492 -5.110 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.1948 0.0589 -3.300 0.001 

Upstream Tangent (1201-2600 ft.) (UT3) -0.0525 0.0557 -0.940 0.346 

AIC: 17559         

KABHORC_N Crash Dataset (Fatal/Injury Crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.1178 0.3370 -15.180 0.000 

Curve Radius (ft.) (R) -0.0005 0.0001 -9.260 0.000 

Curve Length (ft.) (L) 0.0006 0.0001 10.980 0.000 

Log of Historical AADT (AADT) 0.5542 0.0472 11.740 0.000 

Left Shoulder Width (ft.) (LSW) -0.0323 0.0160 -2.010 0.044 

Right Shoulder Type - Rumble (RSTR) -15.5043 2201.6 -0.010 0.994 

Right Shoulder Type - Unpaved (RSTU) 0.1943 0.0930 2.090 0.037 

Average IRI (IRI) -0.1245 0.0423 -2.950 0.003 

Upstream Tangent (0-600 ft.) (UT1) -0.4481 0.0788 -5.690 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.3222 0.0947 -3.400 0.001 

Upstream Tangent (1201-2600 ft.) (UT3) -0.1147 0.0869 -1.320 0.187 

AIC: 7998         

 3 

                                       (    )                   4 

                                                            5 

                                 (5) 6 

 7 

                                        (    )                  8 

                                                              (6) 9 

 10 

 11 

 12 

 13 
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Horizontal Curve Crash Prediction Models using ALL and KABALL Crash Data 1 

 2 

The NB crash prediction models for total and fatal/injury crashes on horizontal curves using ALL 3 

and KABALL crash dataset are presented in equation 7, equation 8, respectively and Table 5.  4 

The difference between these models and the models in Table 3 and Table 4 is that crashes were 5 

identified on horizontal curves using their mile markers regardless of whether the crash report 6 

forms indicated the presence of a horizontal curve at the point of impact.   7 

The results show curve radius, curve length, and natural log of AADT as highly 8 

significant variables (p<0.0001) with coefficients signs and magnitude in line with findings in 9 

literature.  Posted speed shows up as a significant variable which was missing from previous 10 

models showing that speed is an important factor in overall crash occurrence.  The sign of 11 

DiffPSAS coefficient in Table 5 for model based on ALL crash dataset suggests that crashes 12 

increase as the difference between posted and advisory speed reduces which is counter to the 13 

results in previous models and warrants further investigation.  The model based on KABALL 14 

crash dataset in Table 5 shows less crashes on concrete and road-mix pavement as compared to 15 

base condition of asphalt.  A possible explanation could be issues related to pavement friction, 16 

however further investigation is required.   17 

 18 

  19 
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Table 5 Crash Prediction Models for Horizontal Curves on Rural Undivided Roads – Using 1 

ALL and KABALL Crash Dataset 2 

ALL Crash Dataset (Total crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -4.8738 0.1759 -27.710 0.000 

Curve Radius (ft.) (R) -0.0007 0.0000 -22.580 0.000 

Curve Length (ft.) (L) 0.0004 0.0000 13.080 0.000 

Log of Historical AADT (AADT) 0.7502 0.0208 36.050 0.000 

Posted Speed (mph) (PS) 0.0169 0.0017 10.120 0.000 

Average IRI (IRI) -0.0417 0.0205 -2.030 0.043 

Difference between Posted and Advisory Speed (mph) (DiffPSAS) -0.0144 0.0047 -3.040 0.002 

Upstream Tangent (0-600 ft.) (UT1) -0.4830 0.0422 -11.440 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.3912 0.0509 -7.680 0.000 

Upstream Tangent (1201-2600 ft.) (UT3) -0.1202 0.0480 -2.500 0.012 

AIC: 26064         

KABALL Crash Dataset (Fatal/Injury Crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.7248 0.3032 -18.880 0.000 

Curve Radius (ft.) (R) -0.0006 0.0000 -13.080 0.000 

Curve Length (ft.) (L) 0.0004 0.0000 9.580 0.000 

Log of Historical AADT (AADT) 0.6789 0.0368 18.460 0.000 

Posted Speed (mph) (PS) 0.0132 0.0024 5.450 0.000 

Right Shoulder Type - Rumble (RSTR) -14.6861 1335.5095 -0.010 0.991 

Right Shoulder Type - Unpaved (RSTU) 0.1645 0.0754 2.180 0.029 

Average IRI (IRI) -0.0900 0.0350 -2.570 0.010 

Pavement Type – Concrete (PVTC) -0.3146 0.1527 -2.060 0.039 

Pavement Type - Road Mix (PVTRM) -0.2228 0.1149 -1.940 0.052 

Upstream Tangent (0-600 ft.) (UT1) -0.5617 0.0643 -8.740 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.4508 0.0786 -5.740 0.000 

Upstream Tangent (1201-2600 ft.) (UT3) -0.1802 0.0715 -2.520 0.012 

AIC: 11494         

 3 

                                        (    )                  4 

                                                           (7) 5 

 6 

                                        (    )                 7 

                                                           8 

                                      (8) 9 

 10 
 11 

 12 

 13 
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Horizontal Curve Crash Prediction Models using ALL_N and KABALL_N Crash Data 1 

 2 

The NB crash prediction models for total and fatal/injury crashes using ALL_N and KABALL_N 3 

crash dataset are presented in equation 9, equation 10, respectively and Table 6.  The difference 4 

between these models and the models in Table 5 (equation 7 and equation 8) is the exclusion of 5 

crashes occurring within 150 ft. of an intersection or driveway.   6 

 The results in Table 6 for ALL_N crash dataset compared with results in Table 5 for ALL 7 

crash dataset shows the DiffPSAS variable is replaced by left shoulder width, pavement age 8 

becomes a significant variable (older pavement leading to more crashes), and the UT3 variable 9 

becomes insignificant.  The model in Table 6 for KABALL crash dataset is different from model 10 

in Table 5 for KABALL_N crash dataset with some variables interchanging between the models.  11 

Overall, the results suggest that when selecting crashes on horizontal curves using mile markers 12 

only, crashes outside the proximity of an intersection show significant variables which are more 13 

relevant to horizontal curve safety; unlike results from HORC-based crash dataset where the 14 

inclusion of crashes in proximity of intersection did not results in significant differences.  15 

Therefore, the models in Table 6 are recommended for use. 16 

 17 

  18 
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Table 6 Crash Prediction Models for Horizontal Curves on Rural Undivided Roads – Using 1 

ALL_N and KABALL_N Crash Dataset 2 

ALL_N Crash Dataset (Total crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -4.7354 0.1819 -26.030 0.000 

Curve Radius (ft.) (R) -0.0005 0.0000 -15.390 0.000 

Curve Length (ft.) (L) 0.0005 0.0000 17.180 0.000 

Log of Historical AADT (AADT) 0.6502 0.0244 26.690 0.000 

Posted Speed (mph) (PS) 0.0075 0.0016 4.730 0.000 

Left Shoulder Width (ft.) (LSW) -0.0221 0.0079 -2.790 0.005 

Average IRI (IRI) -0.0704 0.0241 -2.920 0.003 

Pavement Surface Age (Yrs.) (PSage) 0.0058 0.0022 2.650 0.008 

Upstream Tangent (0-600 ft.) (UT1) -0.2818 0.0421 -6.700 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.1675 0.0501 -3.340 0.001 

Upstream Tangent (1201-2600 ft.) (UT3) 0.0034 0.0473 0.070 0.942 

AIC: 21844         

KABALL_N Crash Dataset (Fatal/Injury Crashes) 

Variable Name Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.3204 0.2995 -17.760 0.000 

Curve Radius (ft.) (R) -0.0004 0.0001 -8.320 0.000 

Curve Length (ft.) (L) 0.0005 0.0000 11.320 0.000 

Log of Historical AADT (AADT) 0.6019 0.0417 14.430 0.000 

Left Shoulder Width (ft.) (LSW) -0.0324 0.0140 -2.310 0.021 

Right Shoulder Type - Rumble (RSTR) -15.7386 2203.0 -0.010 0.994 

Right Shoulder Type - Unpaved (RSTU) 0.1966 0.0826 2.380 0.017 

Average IRI (IRI) -0.1299 0.0374 -3.470 0.001 

Upstream Tangent (0-600 ft.) (UT1) -0.4368 0.0695 -6.280 0.000 

Upstream Tangent (601-1200 ft.) (UT2) -0.2962 0.0829 -3.570 0.000 

Upstream Tangent (1201-2600 ft.) (UT3) -0.0640 0.0754 -0.850 0.396 

AIC: 9502         

 3 

                                       (    )                 4 

                                                                      (9) 5 

 6 

                                       (    )                  7 

                                                                 (10) 8 

 9 

SUMMARY AND CONCLUSIONS 10 
The objectives of this research were to develop total and fatal/injury crash prediction models for 11 

rural horizontal curves on undivided roads, with focus on three distinct aspects.  The first was an 12 

emphasis on assembling high quality large dataset for accurate model development.  As a result, 13 

many new variables were included in model development, e.g., pavement roughness, pavement 14 
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type, difference between posted and advisory speeds, shoulder widths and types, etc. which 1 

provide an important contribution to current knowledge.  Also curves in both directions were 2 

analyzed separately.  Interestingly, certain variables were not statistically significant in any 3 

models such as travel-way width, truck volume.  The coefficients of most variables in presented 4 

models have correct signs and are reasonable in magnitude with strong statistical significant 5 

signifying the robustness of the models.  The resulting crash prediction models can be used in a 6 

variety of horizontal curve related safety analyses. 7 

 The second focus area was to use regression tree analysis in exploring horizontal curve 8 

safety from a different perspective.  The results of regression tree analysis were useful in two 9 

ways; creating subsets of data which warranted further analysis and a simple model aimed at 10 

practitioners of systemic road safety management.  The results show that there is a marked 11 

increase in the number of crashes on horizontal curves with radius less than 2,500 feet and traffic 12 

volume greater than approximately 1300 vehicles per day. 13 

 The third focus area of this research was to compare horizontal curve crash prediction 14 

models using different crash dataset to analyze the differences in selecting crashes using 15 

different criteria.  Table 7 presents the total and fatal/injury crash prediction models based on 16 

various crash datasets described previously. 17 

 18 

  19 
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Table 7 Comparison of Total and Fatal/Injury Crash Prediction Models using Different 1 

Crash Datasets  2 

Crash 

Dataset 
Crash Prediction Models (Total Crashes) 

HORC                                        (    )                 
                                                               
                                                                                                                                                                     (3) 

HORC_N                                        (    )                   
                                                            
                                                                                                                                                            (5) 

ALL                                         (    )                  
                                                                                        (7) 

ALL_N                                        (    )                 
                                                                          (9) 

Crash 

Dataset 

Crash Prediction Models (Fatal/Injury Crashes) 

 

KABHORC                                        (    )                  
                                                                      (4) 
 

KABHORC_N                                         (    )                  
                                                                           (6) 

KABALL                                         (    )                 
                                                                 
                                                                                                                                                  (8) 

KABALL_N                                        (    )                  
                                                                         (10) 

 3 

Comparison of Curve Crash Prediction Models using HORC, KABHORC, HORC_N, and 4 

KABHORC_N Crash Data 5 
The four crash datasets, namely HORC, KABHORC, HORC_N, and KABHORC_N include 6 

crashes where the crash report form indicates the presence of a horizontal curve.  However, 7 

HORC and KABHORC crash datasets include crashes occurring within 150 feet of an 8 

intersection which are excluded from HORC_N, KABHORC_N crash datasets.   9 

A comparison of curve crash prediction models for total crashes (HORC vs. HORC_N) as 10 

presented in Table 7 (equations 3 and 5) shows that the models are almost the same in terms of 11 

variables with slight differences in the magnitude of coefficients.  A comparison of curve crash 12 

prediction models for fatal/injury crashes (KABHORC vs. KABHORC_N) as presented in Table 7 13 

(equations 4 and 6) shows slight differences where DiffPSAS variable is replaced by left shoulder 14 

width.  15 

Overall, the comparison results show that when crash report form indicates the presence 16 

of a horizontal curve, the inclusion of crashes in the proximity of intersections do not impact 17 

model results much and could be included in the analysis to increase the size of the dataset.  18 

Although intuition dictates that horizontal curve crashes in the proximity of intersections should 19 
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be excluded because they could be intersection-related, it may not be the case all the time given 1 

that the identification of such crashes is based on reporting officer’s judgment and may result in 2 

exclusion of crashes relevant to horizontal curve safety.   3 

 4 

Comparison of Curve Crash Prediction Models using ALL, KABALL, ALL_N, and 5 

KABALL_N Crash Data 6 
The four crash datasets, namely ALL, KABALL, ALL_N, and KABALL_N include crashes which 7 

were identified on horizontal curves using mile markers regardless of whether the crash report 8 

forms indicated the presence of a horizontal curve at the point of impact.  However, ALL and 9 

KABALL crash datasets include crashes occurring within 150 feet of an intersection which are 10 

excluded from ALL_N, KABALL_N crash datasets.   11 

 A comparison of curve crash prediction models for total crashes (ALL vs. ALL_N) as 12 

presented in Table 7 (equations 7 and 9) shows some differences where DiffPSAS is replaced by 13 

left shoulder width and pavement age becomes a significant variable (older pavement leading to 14 

more crashes).  The sign of DiffPSAS coefficient in equation 7 shows that crashes increase as the 15 

difference between posted and advisory speed reduces which is counter to the results in previous 16 

models.  A comparison of curve crash prediction models for fatal/injury crashes (KABALL vs. 17 

KABALL_N) as presented in Table 7 (equations 8 and 10) also shows some differences where 18 

posted speed is replaced by left shoulder width and pavement type variable becomes 19 

insignificant in equation 10.   20 

 Overall, the comparison results suggest that when crashes on horizontal curves are 21 

selected based on mile markers only regardless of crash report information, the dataset without 22 

crashes in the proximity of an intersection show significant variables which are more relevant to 23 

horizontal curve safety as compared to HORC-based crash datasets where the inclusion of 24 

crashes in proximity of intersections did not result in significant differences.  Therefore, caution 25 

should be observed in including crashes in proximity of intersections in such conditions. 26 

 27 

FUTURE WORK 28 
The development of high quality large dataset as described in this research will lead the way to 29 

the development of additional crash prediction models for other types of horizontal curves.  30 

Furthermore, the crash prediction models are the first step to developing a comprehensive set of 31 

horizontal curve CMFs in the future to be used in safety evaluations. 32 
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